首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4906篇
  免费   912篇
  国内免费   885篇
化学   2082篇
晶体学   32篇
力学   954篇
综合类   74篇
数学   416篇
物理学   3145篇
  2024年   6篇
  2023年   52篇
  2022年   105篇
  2021年   135篇
  2020年   134篇
  2019年   131篇
  2018年   163篇
  2017年   178篇
  2016年   226篇
  2015年   208篇
  2014年   291篇
  2013年   438篇
  2012年   296篇
  2011年   336篇
  2010年   289篇
  2009年   335篇
  2008年   329篇
  2007年   342篇
  2006年   341篇
  2005年   301篇
  2004年   281篇
  2003年   223篇
  2002年   228篇
  2001年   182篇
  2000年   149篇
  1999年   144篇
  1998年   135篇
  1997年   110篇
  1996年   88篇
  1995年   92篇
  1994年   99篇
  1993年   49篇
  1992年   46篇
  1991年   38篇
  1990年   21篇
  1989年   34篇
  1988年   21篇
  1987年   21篇
  1986年   10篇
  1985年   16篇
  1984年   12篇
  1982年   16篇
  1981年   9篇
  1980年   4篇
  1979年   10篇
  1978年   10篇
  1977年   6篇
  1976年   3篇
  1973年   3篇
  1969年   2篇
排序方式: 共有6703条查询结果,搜索用时 31 毫秒
61.
The dynamical viscoelasticity of ABS melts with different particle size was investigated at various levels of rubbery phase contents. The effects of the rubber are more pronounced in the terminal zone: a transition from viscoelastic liquid to viscoelastic solid behavior was observed which can be interpreted as a physical gelation occurring at a critical rubbery phase content. This critical content resulted in being smaller in the case of smaller particles. A quantitative explanation of the experimental findings was proposed in terms of the average interparticle distance and overlapping of the chains grafted onto the neighboring rubber particles. The gel-like transition appeared to correspond to an approximately constant level of grafted chains overlapping.Presented in part at the Symposium Recent Developments in Structured Continua, Montreal (Canada), 26–28 May 1993.  相似文献   
62.
The objective of this part of the paper is to summarize the information concerning the authors' works in the field of simulation of two-phase gas-particle turbulent flows with heat transfer and combustion. A kinetic equation had been derived for the probability density function (PDF) of the particle velocity, temperature, and mass distributions in turbulent flows. This PDF equation is used for the construction of the governing conservation equations of mass, momentum, and heat transfer in the dispersed particle phase.The numerical scheme incorporates two-phase fluid dynamics, convective and radiative heat transfer, and combustion. The proposed models have been applied to the calculation of various particle-laden turbulent flows in jets, combustion and gasification chambers, and furnaces.  相似文献   
63.
A direct central collision of two identical infinite cylindrical bodies is studied. A nonstationary plane elastic problem is solved. The variable boundary of the contact area is determined. A mixed boundary problem is formulated. Its solution is represented by Fourier series. An infinite system of Volterra equations of the second kind for the unknown expansion coefficients is derived by satisfying boundary conditions. The basic characteristics of the collision process are determined numerically depending on the curvature of the frontal surface of the bodies  相似文献   
64.
The bidirectional long-wave model introduced by Wu (1994)[1] and Yih & Wu (1995)[2] is applied to evaluate interactions between multiple solitary waves progressing in both directions in a uniform channel of rectangular cross-section and undergoing collisions of two classes, one being head-on and the other overtaking collisions between these solitons. For a binary head-on collision, the two interacting solitary waves are shown to merge during a phase-locking period from which they reemerge separated, each asymptotically recovering its own initial identity while both being retarded in phase from their original pathlines. For a binary overtaking collision between a soliton of height α1 overtaking a weaker one of height α1, the two solition peaks are shown to either pass through each other or remain separated throughout the encounter according as α12 or <3, respectively. With no phase locking during the overtaking, the two solitary waves re-emerge afterwards with their initial forms recovered and with the stronger wave being advanced whereas the weaker one retarded in phase from their original pathlines. By extension, the theory is generalized to apply to uniform channels of arbitrary cross-sectional shape. The Inaugural Pei-Yuan Chou Memorial Lecture, presented at The Sixth Asian Congress of Fluid Mechanics. Singapore, 21–26 May 1995  相似文献   
65.
The particle dispersion characteristics in a confined swirling flow with a swirl number of approx. 0.5 were studied in detail by performing measurements using phase-Doppler anemometry (PDA) and numerical predictions. A mixture of gas and particles was injected without swirl into the test section, while the swirling airstream was provided through a co-flowing annular inlet. Two cases with different primary jet exit velocities were considered. For these flow conditions, a closed central recirculation bubble was established just downstream of the inlet.

The PDA measurements allowed the correlation between particle size and velocity to be obtained and also the spatial change in the particle size distribution throughout the flow field. For these results, the behaviour of different size classes in the entire particle size spectrum, ranging from about 15 to 80 μm, could be studied, and the response of the particles to the mean flow and the gas turbulence could be characterized. Due to the response characteristics of particles with different diameters to the mean flow and the flow turbulence, a considerable separation of the particles was observed which resulted in a streamwise increase in the particle mean number diameter in the core region of the central recirculation bubble. For the lower particle inlet velocity (i.e. low primary jet exit velocity), this effect is more pronounced, since here the particles have more time to respond to the flow reversal and the swirl velocity component. This also gave a higher mass of recirculating particle material.

The numerical predictions of the gas flow were performed by solving the time-averaged Navier-Stokes equations in connection with the well known kε turbulence model. Although this turbulence model is based on the assumption of isotropic turbulence, the agreement of the calculated mean velocity profiles compared to the measured gas velocities is very good. The gas-phase turbulent kinetic energy, however, is considerably underpredicted in the initial mixing region. The particle dispersion characteristics were calculated by using the Lagrangian approach, where the influence of the particulate phase on the gas flow could be neglected, since only very low mass loadings were considered. The calculated results for the particle mean velocity and the mass flux are also in good agreement with the experiments. Furthermore, the change in the particle mean diameter throughout the flow field was predicted approximately, which shows that the applied simple stochastic dispersion model also gives good results for such very complex flows. The variation of the gas and particle velocity in the primary inlet had a considerable impact on the particle dispersion behaviour in the swirling flow and the particle residence time in the central recirculation bubble, which could be determined from the numerical calculations. For the lower particle inlet velocity, the maximum particle size-dependence residence time within the recirculation region was considerably shifted towards larger particles.  相似文献   

66.
The analysis of the rotation of a ferromagnetic ellipsoid suspended in a Newtonian fluid and subjected to a uniform magnetic field is extended to include a long, slender cylindrical fiber which is magnetically saturated. Experimental observations of rotating nickel cylinders with aspect ratiosL/D ranging from 5 to 40 agree with the theoretical predictions that: (1) the proper magnetoviscous time constant for the motion is MV = s/µ 0 M s 2 , (2) larger fiber aspect ratios result in considerably longer orientation times; and (3) the strength of the applied external field has only a slight effect on the overall fiber rotation, and has no effect on the maximum angular velocity achieved. Quantitative agreement of theory and experiments is obtained for fibers withL/D 20; for the shorter fibers, the theory tends to overpredict the fiber rotation rate by as much as 30%. D diameter of the cylinder - D P (r) position-dependent demagnetization tensor, implicitly defined in eq. (2.5) - D xx,D yy,D zz volume-averaged demagnetizing factors for an ellipsoid equivalent to a uniformly magnetized cylinder, defined in eq. (2.6) - H i ;H i magnetic field inside a ferromagnetic body; magnitude ofH i - H 0;H 0 magnetic field applied by external sources; magnitude ofH 0 - k geometric parameter in the hydrodynamic resistance of a body rotating in a Newtonian fluid, eq. (2.2) - L length of the cylinder - L (h);L z (h) hydrodynamic torque exerted on a rotating body; thez-component ofL (h) on the cylinder - L (m);L z (m) magnetic torque exerted on a magnetic body in a magnetic field, eq. (2.4); thez-component ofL (m) on the cylinder - M the magnetization of a magnetic material - M s the saturation magnitude ofM, approached by all ferromagnetic materials asH i becomes large - r position vector of a point within a ferromagnetic body - V volume of a magnetic particle - x, y, z rectangular coordinate axes fixed in the cylinder according to figure 1 - angle of inclination of the axis of the cylinder with respect toH 0 - shear rate - small parameter of slender body theory,=1/ln (2L/D) - s constant viscosity of the suspending fluid - µ 0 the magnetic permeability of free space,µ 0=4 · 10–7 H/m - MV the magnetoviscous time constant, a characteristic time for a process involving a competition of viscous and magnetic stresses - 1 the first normal-stress coefficient - ; z angular velocity of a rotating body; angular velocity of a cylinder about thez-axis, z =– d/dt  相似文献   
67.
The present investigation was concerned with the rheological behaviour of dilute suspensions of solid particles in a gas in a vertical cocurrent flow moving upwards. Starting from the experimentally determined dependence of the pressure drop on the concentration of solid particles and the Reynolds number of the carrier medium in the steady flow region, the rheological parameters were estimated using pseudo-shear diagrams. Air was the carrier medium and the dispersed phase was one of six fractions of polypropylene powder and five fractions of glass ballotini. The results show that the investigated two-phase systems have pseudoplastic character which becomes more pronounced with increases in concentration, equivalent diameter and density of solid particles in the flowing suspension. C d coefficient of particle resistance - d e equivalent diameter of particles - D column diameter - Fr Froude number - g gravitational acceleration - K rheological parameter - L length - n rheological parameter - p t pressure drop due to friction - p m total pressure drop - p ag pressure drop due to acceleration of the gas phase - p as pressure drop due to acceleration of the solid phase - p g hydrostatic pressure of the gas phase - p s specific effective weight of the dispersed phase - r radius - Re Reynolds number - Re p Reynolds number of a particle - Re G generalized Reynolds number - Re G1 generalized Reynolds number relating to the end of the laminar flow region - Re G2 generalized Reynolds number relating to the beginning of the turbulent flow region - w z axial component of velocity - u t steady free-fall velocity of a single particle - w average velocity - w g average velocity of the gas phase - w s average velocity of the dispersed phase of solid particles - relative mass fraction of solid particles - x s volume fraction of solid particles - g coefficient of pressure drop due to friction - µ dynamic viscosity - g density of the gas phase - m density of the suspension - s density of solid particles - ds density of the dispersed phase - w shear stress at the wall  相似文献   
68.
两相流PIV粒子图像处理方法的研究   总被引:7,自引:1,他引:7  
本文在单相PIV技术的基础上研究了两相流动PIV图像处理方法,采用摸板匹配法和灰度加权标定法对两相粒子进行了识别、区分和标定,采用灰度互相关法对区分后的单相粒子图像进行了处理,应用基于以上方法编制的Windows应用软件,首先对由美国Minnesota大学复杂流动实验室提供的两相流动粒子图片进行了处理,通过对比分析可见,应用本文所采用的方法能对两相粒子进行有效的识别和区分,然后以搅拌槽内液固两相流场为例对此方法进行了应用。  相似文献   
69.
IntroductionAs one of the meshfree methods, multiple scale reproducing kernel particle method(RKPM)[1,2]bears, besides the common features of all meshfree methods, a uniqueinherent feature of multiresolution analysis by which the structural response can b…  相似文献   
70.
张建臣 《实验力学》2007,22(1):63-68
复合材料界面状态是衡量复合质量优劣的主要评定因素之一,焊接参数和界面状态之间存在着紧密的联系。为了获得理想的复合质量,必须正确选择爆炸焊接参数。本文在实验的基础上,通过理论研究和数值计算,探讨了爆炸复合的力学模型及物理机制,验证了碰撞角对再入射流的质量(或再入射流的厚度)和爆炸复合材料界面状态存在的影响,得出了波形的变化趋势与碰撞角的变化趋势相一致的结论,同时确立了波形参数和碰撞角的半定量表达式,拓展和深化了爆炸复合的研究领域,丰富和发展了爆炸复合的成波机理,从而能够更好地指导工程应用,减少工程损耗,提高复合质量和工作效率。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号